Đáp án+Giải thích các bước giải:
a)
\frac{2}{x+3}+\frac{x}{3-x}-\frac{x-x^{2}}{x^{2}-9} (đk:x\ne\pm3)
=\frac{2.(x-3)}{(x-3).(x+3)}-\frac{x.(x+3)}{(x-3).(x+3)}-\frac{x-x^{2}}{(x-3).(x+3)}
=\frac{2x-6-x^{2}-3x-x+x^{2}}{(x-3).(x+3)}
=\frac{-2x-6}{(x-3).(x+3)}
=\frac{-2.(x+3)}{(x-3).(x+3)}
=\frac{-2}{x-3}
=\frac{2}{3-x}
b)
\frac{2}{x-2}+\frac{3}{x+2}-\frac{18-5x}{x^{2}-4} (đk:x\ne\pm2)
=\frac{2.(x+2)}{(x-2).(x+2)}+\frac{3.(x-2)}{(x-2).(x+2)}-\frac{18-5x}{(x-2).(x+2)}
=\frac{2x+4+3x-6-18+5x}{(x-2).(x+2)}
=\frac{10x-20}{(x-2).(x+2)}
=\frac{10.(x-2)}{(x-2).(x+2)}
=\frac{10}{x+2}
c)
\frac{4}{x+2}+\frac{3}{2-x}+\frac{12}{x^{2}-4} (đk:x\ne\pm2)
=\frac{4.(x-2)}{(x-2).(x+2)}-\frac{3.(x+2)}{(x-2).(x+2)}+\frac{12}{(x-2).(x+2)}
=\frac{4x-8-3x-6+12}{(x-2).(x+2)}
=\frac{x-2}{(x-2).(x+2)}
=\frac{1}{x+2}