Đáp án:
1. \( - 3cm\)
2. \(12\pi \sqrt 3 \left( {cm/s} \right)\)
3. \(\begin{array}{l}
{v_{\max }} = 24\pi \left( {cm/s} \right)\\
{a_{\max }} = 96{\pi ^2}\left( {cm/{s^2}} \right)
\end{array}\)
Giải thích các bước giải:
1. Ta có:
\(\begin{array}{l}
T = \dfrac{{60}}{{120}} = 0,5s\\
\omega = \dfrac{{2\pi }}{T} = \dfrac{{2\pi }}{{0,5}} = 4\pi \left( {rad/s} \right)\\
A = \dfrac{{12}}{2} = 6\left( {cm} \right)\\
\cos \varphi = \dfrac{x}{A} = \dfrac{{ - \dfrac{A}{2}}}{A} = - \dfrac{1}{2} \Rightarrow \varphi = - \dfrac{{2\pi }}{3}\\
\Rightarrow x = 6\cos \left( {4\pi t - \dfrac{{2\pi }}{3}} \right) = 6\cos \left( {4\pi .60 - \dfrac{{2\pi }}{3}} \right) = - 3cm
\end{array}\)
2. Ta có:
\(\begin{array}{l}
v = - 24\pi \sin \left( {4\pi t - \dfrac{{2\pi }}{3}} \right) = - 24\pi \sin \left( {4\pi .2 - \dfrac{{2\pi }}{3}} \right) = 12\pi \sqrt 3 \left( {cm/s} \right)\\
a = - 96{\pi ^2}\cos \left( {4\pi t - \dfrac{{2\pi }}{3}} \right) = - 96{\pi ^2}\cos \left( {4\pi .2 - \dfrac{{2\pi }}{3}} \right) = 48{\pi ^2}\left( {cm/{s^2}} \right)
\end{array}\)
3. Ta có:
\(\begin{array}{l}
{v_{\max }} = 24\pi \left( {cm/s} \right)\\
{a_{\max }} = 96{\pi ^2}\left( {cm/{s^2}} \right)
\end{array}\)