Giải thích các bước giải:
a.Xét $$\Delta OAN,\Delta OBM$$ có:
$$ON=OM$$
Chung $$\hat O$$
$$OA=OB$$
$$\to\Delta OAN=\Delta OBM(c.g.c)$$
b.Ta có: $$AM=OA-OM=OB-ON=BN$$
c.Từ câu a $$\to\widehat{OBM}=\widehat{OAN},\widehat{OMB}=\widehat{ONA}$$
$$\to\widehat{IBN}=\widehat{IAM},\widehat{INB}=180^o-\widehat{ONA}=180^o-\widehat{BMO}=\widehat{IMA}$$
Xét $$\Delta IBN,\Delta IAM$$ có:
$$\widehat{IBN}=\widehat{IAM}$$
$$BN=AM$$
$$\widehat{IMA}=\widehat{INB}$$
$$\to\Delta IAM=\Delta IBN(g.c.g)$$
$$\to IA=IB, IM=IN$$
Xét $$\Delta OIM,\Delta OIN$$ có:
Chung $$OI$$
$$OM=ON$$
$$IM=IN$$
$$\to\Delta OIM=\Delta OIN(c.c.c)$$
$$\to\widehat{IOM}=\widehat{ION}$$
$$\to OI$$ là phân giác $$\widehat{xOy}$$
d.Từ câu a $$\to IA=IB$$
Vì $$K$$ là trung điểm $$AB\to KA=KB$$
$$\to OA=OB, IA=IB, KA=KB$$
$$\to O, I, K\in$$ trung trực $$AB$$
$$\to O, I, K$$ thẳng hàng