Cách chứng minh tứ giác nội tiếp - Toán học lớp 9
6/29/2023 8:16:24 AM
phamanhq ...

A. Phương pháp giải

Đối với chứng minh tứ giác nội tiếp, ta sử dụng các dấu hiệu nhận biết sau:

+ Tứ giác có tổng hai góc đối bằng 180o.

+ Tứ giác có góc ngoài tại một đỉnh bằng góc trong của đỉnh đối diện.

+ Tứ giác có bốn đỉnh cách đều một điểm (mà ta có thể xác định được). Điểm đó là tâm của đường tròn ngoại tiếp tứ giác đó.

+ Tứ giác có hai đỉnh kề nhau cùng nhìn một cạnh chứa hai đỉnh còn lại dưới một góc α.

+ Có 4 điểm cách đều 1 điểm bên trong nó

+ Nếu có 2 cạnh kề kéo dài cắt nhau tại 1 điểm

    VD: ta có tứ giác ABCD và AD vs BC cắt nhau tại điểm E thì ta chứng minh tam giác EAB đồng dạng với tam giác ECD => ABCD nội tiếp 

+ Chứng minh theo định lý Ptolêmê (tự tìm hiểu thêm)

+ Chú ý: Để chứng minh một tứ giác là tứ giác nội tiếp ta có thể chứng minh tứ giác đó là một trong các hình sau: Hình chữ  nhật, hình vuông, hình thang cân.

Đối với bài toán tính góc, ta sử dụng các tính chất của tứ giác nội tiếp để tính toán. 

B. Ví dụ minh họa

Ví dụ 1 : Tính số đo các góc của tứ giác ABCD

Cách chứng minh tứ giác nội tiếp cực hay, chi tiết

Hướng dẫn giải

Do ABCD là tứ giác nội tiếp nên Cách chứng minh tứ giác nội tiếp cực hay, chi tiết

Vì Cách chứng minh tứ giác nội tiếp cực hay, chi tiết nên Cách chứng minh tứ giác nội tiếp cực hay, chi tiết

Ta có: Cách chứng minh tứ giác nội tiếp cực hay, chi tiết

⇒ Cách chứng minh tứ giác nội tiếp cực hay, chi tiết

Vậy Cách chứng minh tứ giác nội tiếp cực hay, chi tiết .

Ví dụ 2 : Cho đường tròn tâm O. Từ điểm A ở bên ngoài đường tròn (O) vẽ hai tiếp tuyến AB và AC với đường tròn (B, C là hai tiếp điểm). Trên BC lấy điểm M, vẽ đường thẳng vuông góc với OM tại M, cắt AB và AC lần lượt tại E và D. Chứng minh các tứ giác EBOM và DCMO nội tiếp được trong đường tròn. Xác định tâm các đường tròn đó.

 

Hướng dẫn giải

Cách chứng minh tứ giác nội tiếp cực hay, chi tiết

– Chứng minh tứ giác EBOM nội tiếp

Có OM ⊥ ME (gt) nên góc Cách chứng minh tứ giác nội tiếp cực hay, chi tiết

OB ⊥ BE (BE là tiếp tuyến của (O)) nên góc Cách chứng minh tứ giác nội tiếp cực hay, chi tiết

⇒ Cách chứng minh tứ giác nội tiếp cực hay, chi tiết

Tứ giác EBOM nội tiếp trong đường tròn đường kính OE.

– Chứng minh tứ giác DCMO nội tiếp

Có OM ⊥ DM (gt) nên góc Cách chứng minh tứ giác nội tiếp cực hay, chi tiết

CD ⊥ OC (CĐ là tiếp tuyến của (O)) nên góc Cách chứng minh tứ giác nội tiếp cực hay, chi tiết

Nên M, C là hai đỉnh liên tiếp cùng nhìn OD dưới một góc 90o

⇒ Tứ giác DCMO nội tiếp trong đường tròn đường kính OD.

Ví dụ 3 : Qua điểm B nằm ở bên ngoài đường tròn (O), vẽ hai tiếp tuyến BC và BD với đường tròn (O), (C, D là các tiếp điểm). Từ B vẽ cát tuyến BMN (M nằm giữa B và N, tia BN nằm giữa hai tia BC và BO), gọi H là giao điểm của BO và CD.

a. Chứng minh BM.BN = BH.BO.

b. Chứng minh tứ giác OHMN nội tiếp.

Hướng dẫn giải

Cách chứng minh tứ giác nội tiếp cực hay, chi tiết

a. Ta có: BC = BD (tính chất hai tiếp tuyến cắt nhau)

OC = OD (bán kính đường tròn (O))

BO là đường trung trực của CD ⇒ BO ⊥ CD (1)

Xét ΔBMC và ΔBCN có:

Cách chứng minh tứ giác nội tiếp cực hay, chi tiết : chung

Cách chứng minh tứ giác nội tiếp cực hay, chi tiết (cùng chắn cung Cách chứng minh tứ giác nội tiếp cực hay, chi tiết )

⇒ ΔBMC ∼ ΔBCN (g – g)

⇒ Cách chứng minh tứ giác nội tiếp cực hay, chi tiết ⇒ BM.BN = BC2 (2)

Do (1) ta có △BCO vuông tại C, đường cao CH:

⇒ BC2 = BH.BO (hệ thức lượng trong tam giác vuông) (3)

Từ (2) và (3) ⇒ BM.BN = BH.BO.

b. Ta có: BM.BN = BH.BO (chứng minh trên)

⇒ Cách chứng minh tứ giác nội tiếp cực hay, chi tiết

ΔBMO và ΔBHN có:

Cách chứng minh tứ giác nội tiếp cực hay, chi tiết : chung

Cách chứng minh tứ giác nội tiếp cực hay, chi tiết

⇒ ΔBMO ∼ ΔBHN (c – g – c)

⇒ Cách chứng minh tứ giác nội tiếp cực hay, chi tiết(hai góc tương ứng)

⇒ Tứ giác OHMN nội tiếp (hai góc bằng nhau cùng nhìn một cạnh).

C. Bài tập trắc nghiệm

Câu 1 : Cho hình vẽ sau, biết Cách chứng minh tứ giác nội tiếp cực hay, chi tiết . Đáp án nào sau đây SAI

Cách chứng minh tứ giác nội tiếp cực hay, chi tiết

Cách chứng minh tứ giác nội tiếp cực hay, chi tiết

Hướng dẫn giải

Đáp án D

Ta có: Cách chứng minh tứ giác nội tiếp cực hay, chi tiết (hai góc kề bù)

Ta lại có : Cách chứng minh tứ giác nội tiếp cực hay, chi tiết (ABCD là tứ giác nội tiếp đường tròn)

Lại có Cách chứng minh tứ giác nội tiếp cực hay, chi tiết là góc ngoài của ΔECB

Cách chứng minh tứ giác nội tiếp cực hay, chi tiết

Cách chứng minh tứ giác nội tiếp cực hay, chi tiết (ABCD là tứ giác nội tiếp đường tròn)

Vậy Cách chứng minh tứ giác nội tiếp cực hay, chi tiết

Câu 2 : Phát biểu nào sau đây sai ?

A. Tứ giác nội tiếp có 4 đỉnh cùng nằm trên cùng một đường tròn

B. Nếu một tứ giác có tổng hai góc đối bằng 180o thì tứ giác đó nội tiếp đường tròn.

C. Trong một tứ giác nội tiếp tổng hai góc bất kì bằng 180o

D. Hinh chữ nhật luôn nội tiếp đường tròn.

Hướng dẫn giải

Đáp án C

Trong tứ giác nội tiếp, tổng hai góc đối mới bằng 180o .

Câu 3 : Số đo góc A trong hình vẽ

Cách chứng minh tứ giác nội tiếp cực hay, chi tiết

Cách chứng minh tứ giác nội tiếp cực hay, chi tiết

Hướng dẫn giải

Đáp án D

Ta có tứ giác ABCD nội tiếp đường tròn (O)

Cách chứng minh tứ giác nội tiếp cực hay, chi tiết

Mà Cách chứng minh tứ giác nội tiếp cực hay, chi tiết

Vẫn còn nội dung phía dưới, bạn hãy ấn nút để xem tiếp nhé...