1, P = (sqrtx)/(sqrtx - 1) + 3/(sqrtx +1) - (6sqrtx - 4)/(x -1) (x >=0 ; x\ne 1)
= (sqrtx (sqrtx +1))/((sqrtx -1)(sqrtx +1)) + (3(sqrtx -1))/((sqrtx +1)(sqrtx -1)) - (6sqrtx - 4)/((sqrtx -1)(sqrtx +1))
= (x + sqrtx + 3sqrtx -3 - 6sqrtx + 4)/((sqrtx -1)(sqrtx +1))
= (x -2sqrtx + 1)/((sqrtx -1)(sqrtx +1))
= ((sqrtx -1)^2)/((sqrtx -1)(sqrtx +1))
= (sqrtx -1)/(sqrtx +1)
Vậy với x >=0 ; x\ne 1 thì P = (sqrtx -1)/(sqrtx +1)
2, x = 4 (TM)
Thay vào P ta có :
P = (sqrtx -1)/(sqrtx +1)
= (sqrt4 -1)/(sqrt4 + 1)
= (2 -1 )/(2+1)
= 1/3
Vậy P = 1/3 khi x = 4
3, P = -1
<=> (sqrtx - 1)/(sqrtx +1) = -1
=> sqrtx -1 = -(sqrtx +1)
<=> 2sqrtx = 0
<=> sqrtx =0
<=> x= 0 (TM)
Vậy x= 0 thì P= -1
4, P= (sqrtx -1)/(sqrtx +1)
= (sqrtx + 1 - 2)/(sqrtx +1)
= 1- 2/(sqrtx +1)
sqrtx + 1 >= 0 + 1 > 0
=> 2/(sqrtx +1) > 0
=> P =1 - 2/(sqrtx +1) < 1
Vậy P < 1 khi x >=0 ; x\ne1