Đáp án+Giải thích các bước giải:
a)
(1+\frac{7-\sqrt{7}}{1-\sqrt{7}}).(1+\frac{7+\sqrt{7}}{1+\sqrt{7}})
=[1+\frac{\sqrt{7}.(\sqrt{7}-1)}{-(\sqrt{7}-1)}].[1+\frac{\sqrt{7}.(\sqrt{7}+1)}{\sqrt{7}+1}]
=(1-\sqrt{7}).(1+\sqrt{7})
=1^{2}-(\sqrt{7})^{2}
=1-7
=-6
b)
\frac{3\sqrt{8}-2\sqrt{12}+\sqrt{20}}{3\sqrt{18}-2\sqrt{27}+\sqrt{45}}
=\frac{3\sqrt{2^{2}.2}-2\sqrt{2^{2}.5}+\sqrt{2^{2}.2}}{3\sqrt{3^{2}.2}-2\sqrt{3^{2}.3}+\sqrt{3^{2}.5}}
=\frac{3.2\sqrt{2}-2.2\sqrt{3}+2\sqrt{5}}{3.3\sqrt{2}-2.3\sqrt{3}+3\sqrt{5}}
=\frac{(\sqrt{2}-\sqrt{3}+\sqrt{5}).(2.3-2.2+2)}{(\sqrt{2}-\sqrt{3}+\sqrt{5}).(3.3-2.3+3)}
=\frac{6-4+2}{9-6+3}
=4/6
=2/3
c)
\frac{\sqrt{9-4\sqrt{5}}}{2-\sqrt{5}}
=\frac{\sqrt{5-4\sqrt{5}+4}}{2-\sqrt{5}}
=\frac{\sqrt{(\sqrt{5})^{2}-2.\sqrt{5}.2+2^{2}}}{-(\sqrt{5}-2)}
=\frac{\sqrt{(\sqrt{5}-2)^{2}}}{-(\sqrt{5}-2)}
=\frac{|\sqrt{5}-2|}{-(\sqrt{5}-2)}
=\frac{-(\sqrt{5}-2)}{\sqrt{5}-2}
=-1